

Adversary for Social Good: Protecting Familial Privacy through Joint Adversarial Attacks

Chetan Kumar, Riazat Ryan, Ming Shao

Department of Computer and Information Science, University of Massachusetts, Dartmouth

Data Leakage:

- Limited time to read Terms & Conditions
- Limited knowledge (especially children) to understand
- Unintentional leakage

Behavioral Targeting:

Visitor clicks the

ad and comes

back to your site

Retargeting Marketing On Websites

Webpage we were re-targeted on

Webpage we visted

Already developed Advanced Algorithms to analyze users' personal data and identity:

Your ads display

on other sites

- Shopping Habits
- Movie Preferences
- **Reading Interests**
- etc.

•••

Motivation:

- Generally, people have no willing to disclose personal data
- Image recognition has achieved significant process in the past decade

Image Classification on ImageNet

Visual kinship understanding drawing more attention

Motivation:

Graph Neural Network (GNN)

- GNN provides a new perspective for learning with Graph
- It may promote familial feature learning and understanding
- Social Media
 - Social Media is mainly featured by sharing photos and social connections (friend, relative, etc.)
 - Learning models with social media data can be developed towards various goals
 - Unfortunately, it may lead to information leakage and expose privacy w/ or w/o intention
 - You can imagine how furious a celebrity will be when their family members photos are exposed without their permission

Privacy Leakage over Social Media:

Photo Clicked by a Person

Privacy Leakage over Social Media:

Photo Clicked by a Person

Family Information Searched over the Web 💋 UMass |

Dartmouth

Privacy Leakage over Social Media:

💋 UMass |

Dartmouth

Family Recognition on the Graph:

- G = (V, E) an attributed and undirected graph
- The adjacency matrix $A \in \{0, 1\}^{N \times N}$

 $A_{ij} = egin{cases} 1 & ext{if edge from vertex i to j} \ 0 & ext{otherwise} \end{cases}$

1 3

- $X \in \mathbb{R}^{N \times D}$ represents **node features**
- $X_L \in \mathbb{R}^{D \times N_L}$ and $X_U \in \mathbb{R}^{D \times N_U}$ be the **labeled and unlabeled** image features
- $y_L \in \mathbb{R}^{N_L}$ is the **label vector**
- Goal is to find the mapping: $f_G: ([X_L, X_U]) \rightarrow ([y_L, y_U])$

Adjacency matrix(A)

	1	2	3	4
1	0	1	1	0
2	1	0	1	0
3	1	1	0	1
4	0	0	1	0

C	Deg	ree r	natr	ix (D
	1	2	3	4
1	2	0	0	0
2	0	2	0	0
3	0	0	2	0
4	0	0	0	1

Graph Construction:

IDs (Identities) • Kin (Family Relation) NN (Nearest Neighbor) Family 1 Spouse rents Kin Spouse Siblings Siblings **Identities** Multiple Photos (Identities) or Same Person Family Spouse **Nearest Neighbor** Siblings Spouse Siblings **Original Features + Graph**

Multiple Face Photos (Identities) of Same Person

Model Learning:

Where,

- A' = (A + I) to add self-loops
- D' is the Degree Matrix of A' to normalize large degree nodes

•
$$H^0 = X$$

UMass Dartmouth

- Privacy at Risk
 - Social media data may expose sensitive personal information
 - This can be leveraged and lead to information leakage without user's attention

Model Framework:

- Adversarial Attack:
 - Added Noise to Node Features by calculating sign of the Gradient
 - Added/Removed edges (relationships) between nodes

Model Framework:

- Model Compromised:
 - By using Noisy Features and Noisy Graph

Algorithm:

Joint Feature and Graph Adversarial Samples

The proposed joint attack model can be formulated as:

$$\max_{\{X',A'\}} \mathcal{L}_{\mathcal{AD}}(X',A') \triangleq \max_{\{X',A'\}} \ln Z^*_{\text{pert}} - \ln Z^*_{\text{clean}},$$

s.t., $\lambda \|A - A'\|_0 + (1 - \lambda) \|X - X'\|_F \le \theta$

Here,

- L_{AD} is the loss function of the joint attack
- II. II is the matrix Frobenius norm
- λ is the balancing parameter
- Z_{pert}^* is the softmax output of the perturbed labeled data
- Z^{*}_{clean} is based on clean features and graph

Datasets:

Families in the Wild (FIW)

Datasets:

Pre-processing

- Extracting image features using pre-trained SphereNet
- Constructed the social graph (IDs, Kin, k-NN)
- Created two social networks
 - Family-100
 - Contains 502 subjects
 - 2758 facial images
 - 502/2758 nodes for training
 - 2256 for validation and testing
 - Family-300
 - Contains 1712 subjects
 - 10255 facial images
 - 1712/10255 for training
 - 8543 for validation and testing

Results:

- Impacts of graph parameters
 - Best value for k = 2
 - Best value for ID and Kin= 5

Joint Feature and Graph Adversarial Samples

 $Total-Budget = \lambda * Edge-Flipping-Ratio + (1-\lambda) * 100 * \epsilon$

Family-100

- Single Attack
 - Feature only and graph only attacks are implemented
 - But excessive use of any particular attack compromises of the *data* largely, i.e., perceivable visual change
- Joint Attack
 - We propose a joint attack which proves more costefficiency

UMass

Dartmouth

Joint Feature and Graph Adversarial Samples

Family-300

- Single Attack
- Joint Attack

UMass | Dartmouth

Loss and Accuracy on Family-100

- Run the *Joint Attack Algorithm* for 13 iterations
- Average result for 5 trials
- Accuracy decreased with more iterations
- And *Model Loss* is increasing

Qualitative Evaluation:

Impacts of ϵ on image and node features

- High-dimensional raw image data require weak noise to fool the model
- Low-dimensional visual features require relatively strong noise to fool the model

 $\epsilon = 0.001$

 $\epsilon = 0.01$

 $\epsilon = 0.06$

- Demonstrated the family information was at risk on social network through plain graph neural networks
- Proposed a joint adversarial attack modeling on both features and graph structure for family privacy protection
- Qualitatively showed the effectiveness of our framework on networked visual family datasets

 Future extension: Adapt our modeling to different types of data and other privacy related issues

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.

- 1. https://techcrunch.com/2014/05/19/netflix-neil-hunt-internetweek/
- 2. https://www.business2community.com/marketing/multiplebenefits-retargeting-ads-01561396
- 3. https://blog.ladder.io/retargeting-ads/
- https://reelgood.com/movie/terms-and-conditions-may-apply-2013
- https://clclt.com/charlotte/cucalorus-report-part-3/Content?oid=3263928
- 6. https://www.capitalxtra.com/terms-conditions/general/
- 7. https://paperswithcode.com/sota/image-classification-onimagenet

Q & A

Thank you

www.chetan-kumar.com
http://www.cis.umassd.edu/~rryan2/