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= Generally, people have no " |mage recognition has achieved
willing to disclose personal significant process in the past
data decade
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= Visual kinship understanding drawing more attention
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= Graph Neural Network (GNN)

= GNN provides a new perspective for learning with Graph

" |t may promote familial feature learning and understanding
= Social Media

= Social Media is mainly featured by sharing photos and social
connections (friend, relative, etc.)

= Learning models with social media data can be developed
towards various goals

= Unfortunately, it may lead to information leakage and expose
privacy w/ or w/o intention

= You can imagine how furious a celebrity will be when their
family members photos are exposed without their permission
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Family Recognition on the Graph:  §/z KL NN
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= |Ds (Identities) = Kin (Family Relation) ® NN (Nearest Neighbor)
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= Privacy at Risk
= Social media data may expose sensitive personal information
® This can be leveraged and lead to information leakage
without user's attention
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= Adversarial Attack:
= Added Noise to Node Features by calculating sign of the
Gradient
» Added/Removed edges (relationships) between nodes

Sneak Adversarial Labeled Adversarial
Photo Noise Image Image

Original Features + Adversarial Features
Graph + Graph
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= Model Compromised:
= By using Noisy Features and Noisy Graph
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Train/Re-train
GNN model
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Samples

The proposed joint attack model can be formulated as:

P

I ol B ALY R # o
max Lap(X',A") = max InZ5 —1InZ.,,
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Here,

" L,p istheloss function of the joint attack

= ||. || is the matrix Frobenius norm

= Ais the balancing parameter

" Zyert is the softmax output of the perturbed labeled data

" 7 10aqn IS based on clean features and graph
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Families in the Wild (FIW)

Father-Daughter Grandfather-Granddaughter Brother-Brother
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= Pre-processing

= Extracting image features using pre-trained SphereNet
= Constructed the social graph (IDs, Kin, k-NN)
= Created two social networks
= Family-100
= Contains 502 subjects
= 2758 facial images
= 502/2758 nodes for training
= 2256 for validation and testing
= Family-300
= Contains 1712 subjects
= 10255 facial images
= 1712/10255 for training
= 8543 for validation and testing
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= Impacts of graph parameters
= Bestvaluefork=2

= Best value for ID and Kin=5
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Joint Feature and Graph Adversarial Samples
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Joint Feature and Graph Adversarial Samples

Family-300
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Loss and Accuracy on Family-100

= Run the Joint Attack 257 10.8
Algorithm for 13 iterations ¢ 2|

= Average result for 5 trials 2 - v g

" Accuracy decreased with § 1 04 &

more iterations '
= And Model Loss is 0.5}
increasing ol .
1 2 3 4 5 6 7 8 9 10 11 12 13
lterations
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Impacts of € on image and node features
= High-dimensional raw image data require weak noise to
fool the model
= Low-dimensional visual features require relatively
strong noise to fool the model
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* Demonstrated the family information was at risk on social
network through plain graph neural networks

" Proposed a joint adversarial attack modeling on both features
and graph structure for family privacy protection

" Qualitatively showed the effectiveness of our framework on
networked visual family datasets

" Future extension: Adapt our modeling to different types of data
and other privacy related issues
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